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FOREWORD

The Army Research Institute for the Behavioral and Social Sciences (ARI) has developed a
wide range of statistical models to test hypotheses generated in relation to an equally wide range
of measurement and evaluation situations. The powerful Pandomized Block (RB) design has
traditionally been a preferred model for much psychological research. The RB design has the
stringent requirement, however, that the sample population be strictly defined and stratified
beforehand, a requirement more appropriate in » controlled laboratory environment than in many
Army field situations. This Technical Paper describes the development of an alternative statistical
design which provides the advantages of the classic RB method without its operational
disadvantages, and which will be useful not only in the Individual Training and Performance
Evaluation Technical Area in which it was developed but in other arers of behavioral science
research.

The entire research is responsive to requirements of RDTE Project 2Q7627 174745, Selection
and Individual Training Research, FY 1976 Work Program, and to specis! requirements of the
Deputy Chief of Staff for Personnel.

J. E. UHLANER,
Technical Director
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A MODEL FOR USING QUALITATIVE VARIABLES AS COVARIATES IN THE
ANALYSIS OF COVARIANCE

BRIEF

Requirement:

To develop, as an alternative to the traditional Randomized Block (RB) two-way analysis of
variance design, an equally efficient statistical model that will eliminate the RB's requirement for a
priori stratification and sampling and, at the same time, retain the RB’s ability to handle
categorical concomitant variables. That is, to develop a statistical design with the advantages of the
classic RB method without its operational disadvantages.

Procedure:

The statistical model selected for comparison and test was a modified analysis of covariance
{ANCOVA) design that does not require previously selected stratified samples and does
incorporate the ability to handle categorical variables-the Categorical Analysis of Covariance
ILANCOVA). The powers of fixed effects RB and CANCOVA using qualitative (categorical)
¢ .ncomitant variables were analytically and empirically compared. A Monte Carlo program
simulated fixed effects analysis with two levels of treatment, one criterion variable, and a
qualitative concomitant variable with three design types. The parameters which varied for each
design type were sample size, ratio of numbers of row observations, eta, and magnitude of
treatment effects.

Findings:

With relatively large samples, the RB and the CANCOVA designs yielded the same information
in terms of component sums of squares. With small samples, the power relationship is a function of
sample size, design type and amount of heterogei:eity. Empirically, no practical difference was
found between the .uwer of RB and CANCOVA when the samples are large.

Utilization of Findings:

Where the population cannot be well defined or stratified because of necessary administrative
and/or physical constraints, practical field experimentation can be undertaken with a precision
comparable to the more expensive and laborious traditional RB design. The CANCOVA requires
only that the subjects be sampled directly from the populstion and randomly assigned to the
different experimental treatments.
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A MODEL FOFR USING QUALITATIVE VARIABLES AS COVARIATES IN THE
ANALYSIS OF COVARIANCE

Experimental results are not only affected by treatments but by
extraneous variation which often tends to mask the primary effects of
experimental treatments. The effect of extraneous variation on experi-
mental results is referred to as experimental error variance. In the
behavioral sciences experimental error variance can be relatively large
and influence the results of an experiment in such a manner that only
large treatment effects can be detected, and even these may be subject
to uncertainty. By the careful design of experiments, it is possible
to control sources of extraneous variation, reducing experimental error
variance and increasing the precision of the experiment (precision
refers to the power or ability of a design to detect treatment effects).

One way of controlling experimental error variance is by capitalizing
on relationships between the experimenta! or dependent variables and
external concomitant variables. External concomitant variables are
variables which are measured prior to experimentation and are not
affected by the experimental treatment. For example, IQ could be used
as an external concomitant variabl: to control for error variance due to
difference in innate abilities. Tvo designs which employ external
concomitant variables to control error variance are: (1) Randomized
Block (RB), and (2) Analysis of Covariance (ANCOVA), The RB experi-
mentally controls error variance by using the external concomitant
variable to stratify the samples assigned to the treatment categories
into homogeneous groups called blocks, while the ANCOVA statistically
controls error variance by using the linear rz2gression of the dependent
experimental variable on the external concomitant variable,

Several researchers have compared the precision of RB and ANCOVA
designs. Cochran' found precision was directly rclated to the correlation
of the concomitant and dependent variables. For correlations of less
than 0.3, the use of RB or ANCOVA to increase the precision of the
experiment was inconsequential, but as the correlation increases towards
unity, sizeable increases in precision are obtained. For large sample
sizes, Cochran concluded that for experimental designs in which the
relationship between the experimental and concomitant variables was linear,
the precisions of the RB and ANCOVA are about the same. Cox? found that

' Cochran, W. G. Analysis of covariance: Its nature and uses.
Biometrika, 1957, 4k, 261-281.

Cox, D. R. The use of a concomitant variable in selecting an experi-
mental design. Biometrika, 1957, Ll, 150-158,



R8 provided greater precision when the correlation between the variables
was less than 0.6 and ANCOVA provided greater precision only whea the
correlation was greater than 0.8. Cox's conclusion applies to designs
with relatively small sample sizes and blocking levels assigned on the
basis of an underlying continuum, i.e., a rank ordering of the categories
of the blocking variable. Feldt? studied designs in which each cell had
at least two observations, (Cox's designs only had one observation per
cell.) Feldt concluded that for correlations less than 0.4, RB resulted
in approximately equal or greater precision than ANCOVA; for correlations
greater than 0.6 ANCOVA was 'superior.”

The findings of the above studies are only applicable to designs in
which the concomitant variable is continuous, i.e., a variable which can
take on any value within a specified range. For example, weight is a
continuous variable; it can take on any value within the possible range
of values applicable to the object being weighed. The results of these
studies do not apply to designs in which the concomitant variable is
qualitative, i.e., a variable which 1s categorical, in that it cate-
gorizes or names; for example, different modes of instruction, racial
differences, differences in geographic origin, or social class differences
are all qualitative variables. When the concomitant variables are
qualitative, it ie traditional to use the RB technique. In the RB design
the population is stratified into homogenous groups based on the cate-
gories of the qualitative concomitant variable. Once the population has
been stratified, random samples of subjects are selected from each strata
and assigned to the different experimental treatments. In a laboratory
setting, with a well-defined population, a priori stratification of and
random selection of subjects from the entire population is easily ac-
complished, However, in field experimentation, where the population is
not well defined and a priori stratification of the entire population
is difficult due to administrative and physical restrictions, employment
of RB designs can be difficult or impossible. In many situations the
possible gain in precision is far outweighed by tihe necessary effort
and expense of employing the RB design.

The ANCOVA offers a possible alternative to the RB design. ANCOVA
does not require a priori stratification and sampling; the subjects are
sampled directly from the total population and randomly assigned to
the different experimental treatments, However, the traditional ANCOVA
model was developed under the assumption that the concomitant variables
were random and continuous; as such, the traditional ANCOVA is not
appiicable in situations where the concomitant variables are qualitative
and therefore categorical. The purpose of this research is to develop a
categorical ANCOVA (CANCOVA), 1i.e., an ANCOVA which will allow the use
of categorical variables, and to compare the precision of the CANCOVA
with the traditional RB.

3 F-ldt, L. S. A comparison of the precision of three experimental
designs employing a concomitant variable Psychometrika, 1958, 23,
335-353.
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REVIEW OF RELATED LITERATURE

Two of the most widely used techniques for increasing the precision
of randomized experiments are: (1) stratificaticn ~¢ blocking of
experimental samples (RB), and (2) analysis of covariance (ANCOVA). This
review is limited to studies in which the precisions of RB and ANCOVA
were compared.

Cochran* showed that, for both RB and ANCOVA | the gain in precision
over completely randomized designs was a function of the size of the
correlation coefficient p_ between the criterion variable Y and the

concomitant variable X. If ¢ 1is the experimental error variance when

no adjustment is employed, then the adjustment by covariance reduces
this variance to:

2 (1 6) :1+fe%3} (1)

where fe is error degrees of freedom. The factor involving fe is needed

to take into account errors in the estimated regression coefficient for
the bivariate sample. The adjustment by blocking reduces 03 to:

oy (1 - piy)- (2)

From equations 1 and 2 it is clear that for small values of pxy (va < 0.3),

the gain in precision afforded by using either RB or ANCOVA is likeiy to
be inconsequential, but as p  increases towards unity,K sizeable increases

in precision are obtained, Cochran concluded that for experimental
designs in which the relationship between X and Y is linear, the precisions
of the RB and ANCCVA are about the same (for large sample sizes).

Cox ® used two measures of imprecision as a basis for comparing the
relative efficiency of RB and ANCOVA. The first 6 true imprecision was
based on the population value of the average error variance for the
difference between two treatment means (adjusted for covariance when
appropriate). The second, appavent imprecision was defined as the

4 Cochran, 1957, op. cit,

®  Cox, 1957, op. cit.




product of the true imprecision and an adjustment factor® based on error
degrees of freedom. The adjustment factor allows for a more meaningful
comparison of the relative efficiency of two techniques which use the
same number of observations but have different error degrees of freedom.
Symbolically, these two indices are:

g'sa ‘2 - 2
I, g, - ?j / [?oy (1 pxy)/n]

f +3
I =1 ._e__.-—
a t fe+l

where §; -y is the variance of the estimated difference between a pair
i 3
of treatment means averaged over all pairs of treatment means, fe is the

error degrees of freedom, n is the number of observations per treatment
group, Uy is the variance of Y within each treatment population  p is

the linear correlation coefficient between X and Y, and [20; (1 - pxy)/n]

is the minimum variance of the difference between treatment means averaged
over all pairs of treatment means. For any pair of designs based on the
same total sample size 6 comparison of the respective values of Ia will

indicate which of the two designs is more efficient.

Cox evaluated It and Ia for RB and ANCOVA using several combinations
of total sample size, Pay and numbers of levels of treatment (t). Cox
concluded that RB provided greater precision when pxy < 0.6, and ANCOVA
provided greater precision only when Pry > 0.8,

It should be noted that designs used by Cox were not fixed effects.
Cox assumed that the blocking levels were selected randomly by ranking
subjects on the blocking variable X, subdividing the ranked subjects
into t groups, and assigning one subject per block at random to each of
the t levels of treatment. Thus the interaction of blocks and treat-
ment provides an appropriate error term. On the other hand, cesigns
used In behavioral research are typically fixed-effects models with
more than one observation per cell,

® Fisher, R. A. The design of experiments. London: Oliver and Boyd,
1949,
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Feldt’ extended Cox's study to designs in which the main and inter-
action effects were fixed and each cell had at least two observations.
All designs considered by Feldt were completely randomized having t
levels of treatment with an equal number of observations, The samples
were assumed to have been drawn from t normally distributed populations
with constant variance and a normally distributed concomitant X, linearly
related to Y. The treatment population means and variances of the X
variable and the within treatment correlation coefficients between X and
Y were assumec. to be equal across all treatment levels,

Feldt used the same indices of imprecision as Cox; however, they
were modified to account for more than one observation per cell, Feldt
concluded that for pxy < 0.4 RB resulted in approximately equal or

greater precision than ANCOVA; for Py > 0.6 ANCOVA was "superior." For
relatively high values of p __ and relatively small total sample size,
xy

the difference in precision in favor of ANCOVA was appreciable., This
difference was attributed to the relatively small sample size not
permitting the experimenter to employ a sufficiently large number of
blocking levels to exploit fully the value of the concomitant variable
in RB, Feldt noted that for pxy < 0.2 and small sample sizes neither

ANCOVA nor RB yielded appreciably greater precision than a completely
randomized design,

In all articles reviewed, the concomitant vaviable K X, was assumed
to be normally distributed. Further, none of the articles was addressed
to the situation in which the concomitant variable was qualitative.
Feldt's and Cox's indices of imprecision assume that the control variable
had an underlying continuous distribution and that each category of the
control variable had a definable variance. When X is qualitative the
within-block variance of X is zero; therefore, these indices cannot be
used to compare the precision of RB and ANCOVA when the concomitant
variable is qualitative,

METHODOLOGY

The methodology discussion is divided into two sections, analytical
and empirical. The analytical section involves a comparison of the
power of RB and CANCOVA in which the number of obse.vations (ni) within

each of the I categories of the concomitant variable is constant. The

empirical section compares the power of CANCOVA in which n, is a random

variable (RCANCOVA) with RB in which n, is a constant; sample size is
held constant for both designs. This comparison simulates the practical

? Feldt, 1958, op. cit.

e



circumstances surrounding the probable implementation of these designs,
The introduction of n, as a random variable complicates the mathematical
models making it onlyffeasible to compare the power of the RB ar:1 RCANCOVA
designs by Monte Carlo methods.

Analytical

Development of the analytical models 1s based on the General Linear
Model (GIM). Structural models for RB and CANCOVA were developed and
appropriate parameter and design matrices were defined. Functional
relationships were established between the RB and CANCOVA model components
by comparing the parameter and design matrices of the respective models,
Mathematical functions were developed for the RB and CANCOVA treatment
effect F ratios. The power of the two models was compared by examining
the relationship between the mathematical functions defining the respec-
tive treatment effect F probability distributions.

Empirical

The Generation of Random Normal Samples. The generation of random
normal samples for RB and RCANCOVA was accomplished by using RANDN.?
RANDN was called separately to generate sets of observations for each
cell of a design. Each set of observations was generated from a popu-
lation with a specified mean and standard deviation of 1. Cell means
were computed from row mean values (row means are a function of the
correlation coefficient, eta, for the specific design being run) and
treatment effect differences., A FORTRAN program was used to compute
the values of row means for each of the possible design combinations
run; program documentation and a table of the row means used for each
value of eta are presented in Appendix A,

Goodness-of-Fit Tests. The randomness and goodness of fit to
normality of the samples generated by RANDN are dependent on the initia-
tion number used in the generating process. Several starting numbers
were tested for the fit of the numbers they generated to a hypothetical
normal distribution by means of a chi-square goodness-of-fit test.
Documentation for the chi-square program is presented in Appendix B,

In addition to these tests data were generated based on 3 000 samples,
using each starting number, for the 12 possible design combinations in
which eta and treatment effect were both 0. The goodness of fit of the
empirical frequency of rejection of the null hypothesis of no treatment
effect to the expected frequency of rejection under the central F
distribution was determined for six nominal alpha levels .0l .05, .10,
.25, .50, .75 using a S-degree-of-freedom chi-square gooiness-of-fit test.

5 University of Maryland UNTVAC 1108 EXEC 8 Math-Pack users' guide.
College Park Md.: Compucer Science Center, University of Maryland,

1970.
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Empirical Power Comparisons. Only designs in which I was equal to
2, 3, and 4 were studied. Several combinations of parameters were used
with each of these three design types (''design type" refers to the
number of categories in the concomitant variable). The parameters which
were varied for each design type were: (1) sample size, (2) ratio of
number of row observations, (3) eta, and (4) magnitude of treatment
effect. Table 1 lists the values assigned to each parameter for each
of the three design types.

Table 1

PARAMETERS FOR EACH OF THE THREE DESIGN TYPES

Design Type

Two-Category Three-Category Four-Category
Parameter Variable Variable Variable
Design Design Design
Sample Size 20 36 56
80 AU 22k
Marginal Ratiz
equal n 1:1 1:1:1 1:1:1:1
unequal n h:1 he1:1 h:1:1:2
Eta 0.0 0.0 0.0
0.3 0.3 0.3
0.9 0.9 0.9
Magnitude of 0.0 0.0 0.0
Treatment Fffect 0.2 0.2 0.2
0.5 005 0'5

Two sets of 3,000 sample data generations were run for each of the
48 design combinations in which the values for eta and the treatment
effect were non-zero. One set of data generations was analyzed by the
RB subroutine and the other by the RCANCOVA subroutine of the Monte
Carlo program (Appendix C). For each run, empirical F ratios for
treatment, interaction (RB), and heterogeneity of regression (RCANCOVA)
were computed along with their respective probabilities under the
null hypotheses of no treatment effect, no interaction effect, and
homogeneity of regression. Each of the computed probabilities for the
treatment effect F ratios was compared to the 6 nominal alpha levels,
and rejection rates were tabulated for each alpha level. For each
sample generated, the computed probability for interaction and
heterogeneity of regression F ratios was compared to the .0l and .05
alpha levels; those samples with interaction or heterogeneity of

-7-



regression significant at the .0l and .05 levels were tabulated as sub-
groups. The empirical rejection rate for the treatment effect F ratios
in each subgroup was tabulated in the same manner as described for the
total set of samples.

The empirical power of a given design combination for a specified
alpha level is equal to the proportion of times the null hypothesis of
no treatment effect is rejected, The empirical powers of RB and RCANCOVA
were compared at each of the six nominal alpha levels. The statistical
significance of the comparisons was determined by using either of two
statistics; the first 1s a z statistic defined by Walker and Lev:®

kh - PR
N Npq /Nl Na

where N, is the number of cases in population 1 for which the observed
proportion of rejection is p,, N; is the number of cases in population
2 for which the observed proportion of reject:lons is pg, P=p + Pg,
q=1-p, and N = N, + Ny; the second is a z’ statistic defined by
Haight:'0

z =

where y is the frequency of rejections in pcpulation 1 and x is the
frequency of rejections in population 2, The z statistic is approximately
a random variable with a normal distribution and the z’ statistic is
approximately a random variable with & Poisson distribution. Since the
binomial test becomes skewed and the normal approximation is inaccurate
for proportions close to O or 1, the z statistic was used for comparisons
in which the population proportions were close to .5, and the z' statistic
was used for comparisons in which the population proportions were close
to 1 or O.

RESULTS
Analytical

The following conventions were used in developing the analytical
arguments:

® Walker, H. M., and Lev,6 J. Statistical inference. New York: Holt,
Rinehart and Winston, 1953,

'® Haight, F. A. Handbook of the Poisson distribution. New York:
wiley, 1967.




1. Superscripts designate the model cr design type: f = full model,
r = reduced model, ¢ = CANCOVA, and b = RB.

2. Subscripts index a variable within a specific design: { =
category of control variable, j = level of the treatment dimension, and
k = individual within an ij combination.

3., Matrix notation is condensed by writing a column vector as its
transpose row vector; for matrices involving repetition of elements,
the following column vector notation is used: Anj is a column vector

of n  A's; e.g., ;9 is a column vector of 9 1l's,

i

The RB model is a two-way analysis of variance design in which the
levels of the blocking variable correspond to the categories of the
qualitative control variable. In the CANCOVA model the categories of
the qualitative control variable are translated into sets of dichotomous

covariables.)! If X (m=1, 2, ..., I-1) is the mth covariable score in
th

the i (i =1, 2, ..., I) category of the qualitative control variable,
then the value of Xm for m = { is d, and the value of X form # 1 1is g,

the values of d # g are arbitrary e.g., d =1 and g = O, or d = -1 and
g =1, etc. Table 2 schematically represents the covariable allocation
or blocking strategy for a design in which the qualitative control
variable has I categories.

ANOVA designs can be represented as special forms of the general
linear model (GLM).'? The matrix form for a sample of n scores based
on a model with p < n parameters is
X8 +e

’

where Y is an (nxl) vector of random observations, X is an (nxp) design
matiix of known quantities, © is a (pxl) vector of unknown parameters,

and e is an (nxl) vector of unobserved random errors K normally distrib-
uted with E(e) =0 and E(e ') = Io° , where I is the (nxn) identity matrix
and ¢® is the variance. Y and X represent observable data, whereas 8 and
e are unknown. The least squares estimator of 6 is defined such that

’
e'e = minimum,

o Suits, D, B. Use of dummy variables in regression equations. Journal
of the American Statistical Association, December 1962, 548-551,

'2 payton, C. M. An introduction to the general linear model. University
of Maryland, Department of Measurement and Statistics Monograph,
College Park, Maryland, 1969.




Table 2

SCHEMATIC OF RB (Ix2) OR CANCOVA (Ix2 WITH I-1 COVARIABLES)

Dichotomous Dummy

Covariables
X ) Treatment
m
Xl X2 0oc xI-l Blocks 1 2
1 0 ...0 Ylll Yl2l
o b o o 1 - 5 Yl..
0 ... 0 Yllnl Y12n1
00 ...1 YI-l,ll YI-l, 21
@M O Q00 G I-1 g . YI-l"
0 0 ...1 Y
I-l,lnI_l I-l,2nI_l
00 ...0 YIll YIEl
5 o 000 G I 0 z YI..
0 e O Y
IlnI 12nI
Y.l. Y.2.
- 10 -



The value of é which minimizes g'g is found by the solution of

3 (e'e)
———— = 0
aet

where t =1, 2,
equations:

..., P. The solution results in a system of normal
xx'8-xy

If X is nonsingular,6 then (K'l)-l exists and there is a unique solution

8- (x'n)xy

The model for a score in the RB analysis is

fb) (fb) (fb fb fb
Yiik = u( + aj + Bi ) + ng ) + eijk)

where the superscript (fb) denotes full model for RB, u(fb) is an

additive constant or grand mean, agfb) (§ =1, 2, ..., J) is the effect
() .y 2

th £ (fb) Co

.e», I) is the effect of being in the 1 blocking level, vy is the

th 3 ()
interaction effect of pbeing in the i} cell of the design,6 and eijk

of being in the jth level of the treatment dimension, 8

is the error effect associated with the kth observation in the

ijth cell of the design. If the parameier and design matrices are
defined using this model 6 the design matrix will be singular with
column rank JI. Gince the smaller order of this design matrix is (J+1)
(1+41), in order to remove the singularity a total of (J+I+l) restrictions
is needed, These restrictions can be generated from three classes of
linear restrictions:

J

Ty =0 (3)

i=1

T e, =0 (4)

T oy, =0 (5)

- 11 -



Under these restrictions, appropriate parameter and design matrices are:"

(fb)’ fb fb fb fb fb fb fb fb
B [0 ) ) 0,008, ) ]

BT T PR "y L“n By "
b tha By by iy P Y Q"zx
1-1,1 "1-1,1 2"1-1,1 2"1-1,1 l"'1-1,1 SZ"’1-1,1 9"1-1,1 vk
. tny n 2"11 Q“n an 9"‘:1 | g“n i
by ety Ay, g, Fnp Wy
T P T P gy

T Y NS RIS N N SRS

I-1,2 "1-1,2 '1-1,2 1-1,2 1-1,2 I-1,2 I-1,2 1-1,2

L hy, T S el

I2 I2 12 12

R N

I2 12

'3 To conserve space the design and parameter matrices illustrated through-

out the rest of this paper are restricted to designs in which the
treatment dimension has two levels; this restriction does not preclude
generalization of the results to designs with more than two levels of
the treatment dimension.
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&

The model for the same score under the CANCOVA analysis using
separate within-cell regression is
I-1
(he) (he) (he)
= + 5 b, X +
Yo TR ey T Py Rt Y o
where (hc) is a superscript denoting a CANCOVA design using separate
within-cell regfession, M(hc) is an additive constant, aghc) is the

effect of being in the jth level of the treatment dimension, is the

b
th 13
regression coefficient due to the regression of the i covariable within

t
the j £ treatment level on the Y scores within the jth treatment level,

xijk is the value of the ith covariable score for the kth observation

within the jth treatment level and egtc)

kth observation within the jth level of treatment. The design matrix

using this model will be singular with column rank JI. Since the
smaller order of the design matrix is JI+l to remove the singularity 1
restriction is needed: J .

jil @, =0

is the random error for the

Under this restriction,6 appropriate parameter and design matrices are:

(he)’ _ (hc) (he)
& i R LS DL PR S RO IL 7 PR L M

O O S N T S

11 11 11 11 11 .

LoooL % kel

21 21 21 21 21

O S S STy

o
.

-1,1 Mr-1,1 M1-1,1 Tr-11 1-1,1
x(he)_ L’n l"n 9'“:1 9”11 Q'"n 5 : O

b b, el : o 1"12 Q"12 9“12
by Thng gy dhgy I
; : ... 0 S 1 g o

1-1,2 l“x-l.z Q“1-1,2 9“1-1,2 1“1-1,2
1 -1 . : . o0 0 ee. ©
P12 Pra . 8 . M2 12 P12

ST S




Both E(fb) and X fic) are nonsingular matrices with column rank JI. Since
both are based on tull-rank models, they account for the same amount of

the total variance and Ssgfb) = SS((EhC).““5

An alternative to the (hc) CANCOVA Is a model in which the pooled
within-cell regression coefficient is used instead of separate within-
cell regression coefficients. The model for a score is

I-1

= (e) (e} |
ij " + aj + 1:1 bi xijk + ejk

where (c) denotes the CANCOVA model in which the pooled within-cell
regression coefficient is used, p(c) is an additive constant, agc) is the

effect of being in the jth level of the treatment dimension, bi is the
pooled within-cell regression coefficient due to the regression of the
ith covariable on the Y scores, xijk is the value of the 1th covariable

score for the kth individual in the jth level of the treatment, and ejk

is the random error for the kth observation within the jth treatment
level. The design matrix for this model will be singular with column
rank J+I+l, Since the smaller order of this design matrix is J+I, in
osder to remove the singularity, 1 restriction is needed:

(45 B &%

o, =0
=1 4

Under this restriction the appropriate parameter and design matrices
are:

(e)' _ |, (c) [e)
2 R e X}

s Scheffé, H. The analysis of variance. New York: John Wiley & Sons,
1959.

'® Graybill, F. A. An introductior to linear statistical models. New
York: McGraw-Hill 6 1961l. Pp. 1l06-145.
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ces Qn

&
3 &

S ke
e

I-1,1 I-1,1 "1-1,13 'I-1,1 1-1,1
K(C) = 11 11 11 11 11
-1, o
12 12 12 12 12

Jo Jo v
o g0 o

I-1,2 I-1,2 I-1,2

Qn e

12 12 12 12 12

J°

th
If the data are such that for the i covariable bij bi,j+l for j =1,

++.,J-1, then the (c) and the (hc) CANCOVA models are identical and

account for the same amount of total variance; however, if for the ith

(he)

covariable bij #b for some value of j, then the column rank of X

i,3+1
will be greater than the column rank of g(c and the difference in the
amount of total variance accounted for by the two models will be reflected
in the difference between their respective error sum of squares.'® 1In
general the difference between the error sum of squares for the two
models 1is

ssgc) - ssghc) = 55, (6)

where SS, 1s the sum of squares due to heterogeneity.

h

A similar approach can be used with the RB model to defire the sum
(xrb) -
SY ). If Yy 0 for all 1, j, then the

appropriate parameter and design matrices for this reduced model are:
(rb) (rb) (rb) rb) (rdb) rb
g = [ ’al ’Bg ’Bé ,...’Bg-l)

of squares for interaction (S

'® Graybill, 1961, op. cit.
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11 1 11 11 11
1 0 1 vee O
" 1"21 T ™ ™
| 1 0 0 oo 1
Pra1,1 M1-1,1 "1-1,1 14,0 s 2
1 1 o 0 ... 0
M I 8 ™1 M o} "
by -1 1 ] e O
P2 M2 ) P2 ™2
b -1 0 1 cee O
P22 N2 P22 "2 "2
4 -1 0 0 ees 1
Pray,2  "ra1,2  "r-1,2 M1-1,2 Pr-1,2
by -1 0 ] ces O
M2 "2 i P P2 "2

The difference in column rank between the full and reduced RB models is
(J-1) (1-1). This difference in column rank is due to the elimination
of the interaction component (Yij = 0) in the reduced model; therefore,

the difference between the reduced and full models' error sum of squares
is due to interaction

b)
ss(1) _ gg(f0) | g5(f0) (7
e e Y
Functional relationships can be established between the sum of squares

components for the RB and CANCOVA models by examining the least squares
estimators for their respective parameter vectors

8D o ()9

A(rb) _ <x(rb)'x(rb)>-l K(rb)'X

Since Y is the same score vector for both models and g(c) = _(rb), the
least squares estimators are equal:

- 18 -



- - - - i 9 (8)

(c) “(rb) ...
{(c) {rb)
@ a Y.l.
~{c) (xb) -
6 b ] = | 8 = | ¥,--
b2 8, Yz..
b1 Bra Y.
From equation 8 it can be shown that
ss{™) - gsle) _ g5(f) _ gglhe) (a)
o a (43 Qa
by _ ) = fb) he)
ssér = sst(,c = ssé - ssl(, ¢ (10)

By substituting the appropriate equalities from equations 9 and 10
into equations 6 and 7 it can be shown that

(fb)
sS, = ssY (11)
and since X(c) = X(rb)
ssgrb) = ssgc) (12)

Table 3 liste all the component sums of squares for each model along with
their respective degrees of freedom.

The difference in the power of the RB and CANCOVA analyses to detect
treatment effects is dependent on both the amount of interaction (hetero-
geneity) present in the data and the difference in degrees of freedom
associated with the mean square error term (MSe) under each model. For

the (fb) RB with I levels of blocking and J levels of treatment:
ss(fb)
e

() . e (13)

qu n,.-JI

ST AE

o=




Table 3

SUM OF SQUARES AND DEGREES OF FREEDOM FOR

RB AND CANCOVA ANALYSES

RB CANCOVA

Sum of Degrees of Sum of Degrees of
Squares Freedom Squares Freedom

S%x J-1 S%! J-1

SSB 1-1 ss, (regression) 1-1

ssY (J-1) (1-1) ss, n..-J-I+1

ss, n..-JI ssghc) n..-JI

Ssy (3-1) (1-1)

Note. The SS, for CANCOVA can be partitioned into SSL'":) which is the error sum of squares using separate within-cell
regression coefficients, and SS;, which is the sum of squares for heterogenity of regression.

and for the (c) CANCOVA wnalysis with I-1 covariables and J levels of
treatment

MS(C) = ._Sif_b.)__ (14)
e  n..-J-T+1
The f ratio for the treatment effect in the (fb) RB is
MS ..=JI)MS
ML LD T (n Mg (15)
" e ss (D)
e e
and the F ratio for treatment effect in the (c) CANCOVA analysis is
MS (n..-J-I+1)MS
o
B e T o)
MS SS
e e



For sufficiently large sample sizes,

P <F(fb))“=‘ P<F(c) )
o 24

where P(ﬂa) is the probability that Fa = Fa under the central F distri-

bution when the sum of squares for interaction (heterogeneity) is equal
to 0. When the sum of squares for interaction (heterogeneity) is not
equal to 0, the following relationships hold:

P (Ft(!fb)) <P (Fg(IC)) when Fh = FY > 1, (17)

where Fh is the F ratio for testing the null hypothesis of homogeneity

of regression and FY is the F ratio for testing the null hypothesis of

no interaction.

P (F(fb) > P <F(°)> when F, = F_ < 1, (18)
o a h T«
Given that Eéfb) > ﬁic) the proof of equations 17 and 18 is
e ..=J=-I+1)MS
(n JI)MSa - (n ) ™ "
ss(b) ss(<)
e e
since 55(¢) = 55("®) 4 55 then
e e h
(n..-JI)MS (n..-J-I+1)Ms
G (T (19)
SS SS + SS
e e h
Dividing by M%&’ expanding and combining like terms:
SS
h s (J-1) (1-1) (20)
Ss(hzj (n..-JI)
e
dividing both sides by (J-1) (I-1) / (n..-JI):
(n..-JI)SS,
>1 (21)

(J-1)(1-1)ss£h°)

since
(n..-JI)SSh MSh

(he) ~ g (he) - Foo
e

-

(3-1)(1-1)s8
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p (Féﬂ’)> < P (Fé°)> when F, = F > 1.

From equations 17 and 18 it is clear that when Fh = Fy = 1 the power
of the RB (Pw(RB)) is equal to the power of the CANCOVA (Pw(C)), when F, =

h
F,> L Pu(RB) > Pw(C), and vhen F, = i 1, Pw(C) > Pw(RB).

The above relationships only apply when the sample size is sufficiently
large to negate any degrees of freedom differences in the distribution
of the treatment effect F ratios for the RB and CANCOVA analyses. When
the sample size is relatively small the degrees of freedom difference
between the two techniques, along with the level of heterogeneity
(interaction) in the samples plays an important part in determining the
relative power of the two techniques.

The following arguments are used to define the functional relation-
ship between the amount of heterogeneity (interaction) in small samples
and the relative power of the RB and CANCOVA techniques. If the critical
(#2) and F(c) and SS(hc) =

a e
is defined as a constant equal to 1, then the value of the

SSh = SS(fb) can be computed as a proportion of Ssﬁhc) = Ssifb); the

values at a given alpha level are known for F
gg( )
e

value of this proportion when Pw(RB) = Pw(C) is defined as a pivot
point value (PV) for the power function. When the ratio S8y, /SS(hc) =
Sﬁfb) / Ss(fb) > PV, Pw(RB) > Pw(C), but when this ratio is less than
PV, then Pw(RB) < Pw(C).
Table 4 lists the PV values for alpha levels of .0l and .0° for two-,
three-  and four-category control variables with sample sizes varying

from (J.1.2) to (J-1-6) observations per cell. The algebraic argument
used to compute the listed PV values is:

Given that ss(fb) ssihc) = 1, then
MS
fb
R (22)
and
MS
(e) . o
fo © TT#55 /n. -1 (23)
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Table 4

PIVOT POINT VALUE FOR THE .0l AND .05 ALPHA LEVELS

Alpha
Design Type Total Sample Size
.01 PV .05 PV
8 5899 .4583
Two-Category 12 .1994 .1690
Variable Design 16 .1139 .1019
20 .0791 .0728
24 .0604 .0566
12 6277 5013
Three-Category 18 .2283 2040
Variable Design 24 .1371 .1270
30 0977 .0923
36 .0770 .0729
16 .6350 .5093
Four-Category 24 2377 .2183
Variable Design 32 .1382 .1301
10 .0997 .0982
48 .0791 .0761

where ﬁifb) and Féc) are the critical values, at a given alpha level,
of the treatment effect F ratios for the RB and CANCOVA designs re-

spectively and n.. is the total sample size. MSa can be computed as a

function of the known constants Rgfb), n..,J, and I using the relation-
ship defined in Equation 22:
£ ()
MS,, = -—q—n”_n = K. (24)

Substitution of K for MSa in Equation 23 results in

() K .
1+SSh/n..-J-I+l ?

transposing gives

- K{n..-J-141)
88y —(—F(C-)— (25)

o
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Since PV = ssh/sséhc) and ssgﬂ’) - ss£h°) =1, then W = SS_; therefore,

h
Equation 25 can be used to compute PV values for different designs.

Table 4 only lists PV values for designs with sample sizes up to a maximum
of (J-1:6). Total sample sizes greater than (J-1.6) are sufficiently
large that the differences in the distributions of the treatment effect F
ratios for the RB and CANCOVA techniques are negligible and the PV values
can be computed directly from Equation 29.

Empirical

None of the 12 null design combinations (eta = Q0 and treatment effect =
0) produced significant lack of fit using a chi-square goodness-of-fit
test, Table 5 coutains summary data for the power comparisons between
RB and CANCOVA for all 48 design combinations in which eta and the
treatment effect were non-zern. The empirical power for each analysis
is expressed as the proportion of samples in which the null hypothesis
of no treatment effect was rejected. The empirical powers for both the
RB and RCANCOVA analyses are given for the .0l, .09, and .10 nominal
alpha levels for each of the 48 design combinations, The power com-
parisons are divided into three groupings: (1) comparisons for the
total number of samples generated (3,000), (2) comparisons for those
samples in which interaction and heterogeneity were significant at the
.01 level, and (3) comparisons for those samples in which interaction
and heterogeneity were significant at the .0" level.

DISCUSSION
Analytical Results

If tnere is no interaction or heterogeneity of regression, the least-
square estimators of parameters and error terms for RB and CANCOVA are
identical. 1In situations where there is interaction or heterogeneity
of regression, the error sum of squares for CANCOVA can be partitioned
into a sum of squares for heterogeneity which equals the sum of squares
for interaction under RB analysis, and an error sum of squares due to
the use of separate within-cell regression coefficients which equals
the error sum of squares under RB analysis. Given the situation where
sample size is fixed and the number of observations per level of the
control variable is a constant, RB and CANCOVA provide the same infor-
mation.

Even though the two techniques can provide the same information in
terms of component sums of squares, the relative powers of the two
techniques are not necessarily equal. The power relation.hip was shown
to be a function of sample sizc, design type, and amount of heterogeneity
(interaction). For situations in which the hetcrogeneity (interaction)

(fb); therefore, P (Féc)) < F (ﬁifb)) making

is equal tu zero, Msgc) < MSe

- P2 -



Table 5

EMPIRICAL POWER LEVELS FOR THE 48 DESIGN COMBINATIONS IN WHICH
ETA AND THE TREATMENT EFFECT WERE NON-ZERO

_Two-Category Des:gns
Sample Size 20 i

Marginal Ratio equal unequal
Treatwent Effect .2 .5 .2 .5
Eta .3 .9 =3 -9 23 .9 3 .9
Model Power Comparisons
RB/RC
01 RB .0187 .0203 L0573 L0617 .0113 0147 0613 .0550
3 RC .0193 L0117 0560 L0660 L0153  .0197 L0613 L0613
Nom{inal 05 RB L0707 .0683 .1813 1317 .0520, .0753 .1850 L1657
Alpha : RC L0723 0637 .1693 .1750 _ L0675 L0693 .1703 L1793
10 RB .1233 1280 .2900 .2810 1100, .1303 .2923, .2787
: RC 1357 1213 .2790 2173 .1280" L1313 . 2690 . 2860
RBO1/RCOL
o1 RB .0000 0000 .1k29 .1795 .0000 .0370 .125%0 L0690
: RC .0000 0000 .0938 .0000 055  ,0313 .0968 0Tl
Nominal o RB 1111 .0508 4286 3077 O%s .11 M688, .2069
alpha P ge 0833 0294 .1875  .1071 1818 09% 1935  .o8%7
10 RB .2222 1765 4286 4103 1379 L1481 L7188,  .2069
' RC 1667 .0588 %38 2143 2121 1563 A1k .2857
RBO5/RCO5 {
o1 RB .0128 .0301 0725 A3 017 .032% .0621 .1269
3 RC L0064 .0126 L0361 .0857 L0164 0145 0405 .0970
Nominal 05 RB .1282 0977 .1884 .2357 .1809  .0976 227195, 2687
Alpha : RC L0641 .okko 1325 1657 V6% L0870 .1216 .2388
0 BB A731 L1729 .21 L3%ST .1838  ,1870  .Lk037,, .3060
: RC L1bTh J132 2590 .25l L1211 L1522 .19%9 L2761

Sample Size 80

RB/RC
o1 RB .0380,  .0473 3207 313 0397  .0%03 .3307 3507
: RC L0507 L0480 307 3390 LOL20  .0k43 3453 310
Nominal o5 RB 1183,  .1443 .5603,, 6050 .1397 L1510 5787 L5917
Alpha : RC .1600 BUS L .6083 .5983 13T 130 5960 5897
10 RB .2103,, .2337 .6710,, .7120 L2180 .27 L6813 .7T110
: RC .2510 .2210 7220 .7080 2247 L2213 L6920 L7073
RBO1/RCOL
o1 RB .0789 0000 .2903 . 5000 0870  .0800 J7500,, .S769,,
& RC L1111 035 4091 4333 .0278  .1000 L2069 17}9
Nominal o5 R 1519 L0714 .5806, .690% 1739 .2000  1.0000,, .3769
Alpha : RC 2222 L1034 727 6667 Lk L4000 .5172 438
10 RB .2368 J1k29 L6774 .6905 .217% 3200 1.0000,, .7692
‘ RC 2222 -5 .8182 7667 21718 L4500 72&1 6087
RBOS/RCO5
01 ™ L0426 L0274 .2933 .3893 L0507 .0816  .Bh62 3643
* RC L0643 Ob32 315 331 .0k05 L0496 4118 . 3660
Nominal . RB .1560 L1438 5333 6242 .130k  .2109 .5897 L6214
Alpha : RC 2071 L1481 L6174 .5693 L86 L1631 L5948 L5752
10 RB 2097 .2808 6200 6913 L1957 .292% 5897, .7214
E RC - o11 L2407 L7114 6788 L2027 .2199 L7190 6667
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Table 5 - Continued

Three-Category Designs
Sample Size Z

Marginal Ratio equal unegual
Treatment Effect b ) .2 .5
Eta B .9 .3 .9 23 9 3 .9
Model Power Comparisons
RB/RC
o1 RB .0163 0177 e} L1210 L0207 .00 L1197 L1480
' RC .0200 L0147 .1%07 L1180 L0170 .0190 .1203 .1310
Nominal 05 RB L0763 LOThT 353 .2923 .0827  .0823 3077 .3110
Alpha ‘ RC .0863 L0763 3277 2980 L0790  .0887 .2953 L3035
10 RB .1520 .1527 L83, 4183 L1523 ,1510 4223 R'S 144
: RC 1537 L1407 k500 4117 L1493 L1487 4153 k233
RBO1/RCO1
o1 RB L0667 L1176 3000 0833 JA1sh L1579, L0690 5000,
) RC .0000 .0000 .1500 L2370 0345 0263 .1333 Q3
Nominal 05 RB .2000, .1765 5500 .2083 L1923 .15719 .38 .5000,,
Alpha it RC L0645 .0952 . 3500 .1852 ek L1316 3333 1T
10 RB . 3000 .4118 L6500 .2500 L2692 .1579 .37193 5000
: RC L0968 1k29 4000 .259% L2759 .18k2 333 %29
RBO5/RC05
o1 kB .0301 L0567 LML L1293 L0556  .0u60 L2418, 2690,
: RC .0136 L0204 L7 .1020 L0252  .0291 kgt 1523
Nominal .5  RB L1566, 1277 Lbby .3265 .1528  .10%4 61k, %655
Alpha ) RC .0816 .0884 3438 2517 .0881 1047 3293 .3113
10 RB 239 2482, L5704 36 2431 L1667 S1320,, 5172
' RC .1565 .1361 4500 L3197 1972 .2035 4551 RS o
Sample 3ize lhi
RB/RC
o1 KB 0847 .0860 L6400 5373 o847 ,0793 .65%0 62717
' RC .085%0 .0817 6600 N%-dd .0873  .0853% NS €397
Nominal 05 RB L2240 2210 8433 E3T .22% .21 .8563 830
Alpha . RC L2247 2237 8400 .8313 2250 .2180 .8517 823
10 RB 3221 .3173 +9040 9857 43,3193 L9140 ,0123
RC 3523 36T L9077 080 3337 3213 W91TT L9073
RBO1/RCO1
o1 RB .0000 L1667 5455 6800 1379 L0541 5152 . 5000
‘ RC .0000 0870 6522 L1333 .1818 .ot%0 3415 6585
Nominal 05 RB 0556, 4333 .9091 L7200 L2414 1892 1576 .7368
Alpha : RC . 3600 L217h 7609 8667 .3182 .2%00 L7073 8973
o RB 1111 . 5000 L9545 .8400 2159 .2973 .9697 L9737
RC . 3600 3043 8478 +9333 3636 .3500 .8537 9756
RBOS5/RCO5
ol RB 0682 L0701 .6395 .7105% .1%00,, .0588 L6017 6493
: RC .0511 0612 L6187  .69% L0687  .0963 5633 63
Nominal 05 RB .1894 2139 85711 8750 7929 .18% 8559 .8881
Alpha ' RC 2117 L2585 L7937 8615 L2977 J2hhh 8608 .8601
10 RB 2197, L3604 .9252 .9211 .37186 2876 .9237 9176
RC 3L .3333 8812 9470 TR0 L3556 L9124 L9l
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Table 5 - Continued

Four-Category Designs
Sample Size z

Marginal Ratio equal unequal
Treatment Effect .2 .5 .2 2
Eta .3 .9 3 .9 23 -9 .3 .9
Model Power Comparisons
RB/RC
o1 RB .0317 .0290 .2353, .2193 .0320 .0%0 2173 2T
: RC .C297 .03%03 2097 .2107 .0323 0280 .2220 2240
Nomfinal o RB L1113 L1143 4757, Wb 21130 1183, Lksk7 k667
Alpha 9% ke L1070 .11% 0 4%00 e 1053 .1020° 450 403
10 RB .1863 .1983 L6020, 5647 L1750 L1917 L5743 5900
: RC .1820 .1893 9720 .59503 L1780 .1817 5703 5133
RBO1/RCO1
o1 RB .0500 L0667 .3200 363, .2222,  .1290 Aoz, L3793
3 RC .0000 .0000 .3000 .1250 L0000  .0%03 J11k3 2897
Nominal o RB . 2000 L1333 . 5200 5455 LOTh, L1290 57169 .5862
Alpha P ke 0625  .1000  .5000  .3000 L0870 L1212 Looo  .hosé
10 RB .2500 . 2000 .6800 TT2T .5185, .1613 6154 L7586,
: RC .0938 . 2000 .6000 L4250 21T A 971k . 5000
RBOS/RCOS
o1 R8 .0268 .0526  .3116  .27127,, 0671 L0657 .63 ,2500
: RC .0192 .0129 .2553 .1355 .0355 0311 1667 2171
Nom{nal 05 M 342 .1382 .5072 L5035 .22%  .1168 .5075 5405,
Alpha ‘ RC .1026 .0839 L4610 .3871 L1560 L0745 4058 +3953
o RB .2081 .2039 6522 L6364, L2088 1606 .5896 LG8
: RC .1923 1871 .6099 .1903 282 1739 .53%62 5116
Sample Size 22
RB/RC
o1 RB L1337 67 8743 817 1237 L1387 .87% .8693
: RC L1363 .1k 20 L8740 8717 .12%  .1387 .8633 .8683
Nominal ., RB .3180 L3340 .9637 .9660 L3230 L3173 .06kO .9633
Alpha ' RC 3323 . 3267 -9583 .96%0 3180  .3313 9593 .96k0
10 RB Ah13 L6117 .9843 9840 M573 0 b7 .9823 .9837
e RC 4550 RV 9790 .9810 A4hs3  uLs3 .9833 .9813
RBO1/RCOL
o1 RB L1765 L0690 8971 +9355 .2083%  .1379 7917 ST
. RC .0l17 L1034 8333 .8788 L1538 .1563 727 8971
Nominal 5  RB L2941 .2069  1,0000 1.0000 .3333  L2klk .9583 .9310
Alpha * RC .2083 L1379 1.0000 9697 Jh62 L2500 9545 .9286
10 RB L3235 L3448 1,0000 11,0000 L4583 4138 1,0000 1.0000
* RC .3333 L3488 1,0000 9697 L4615 L3750 L9545  1.0000
RBOS/RCO5
o1 RB . 1400 .679 .8599 .9167 L1799 .1hk1g 8767 .8553
' RC _.0800 .1678 .9091 .9006 .121F L1594 L8uh .81%0
Nominal o5 R . 2400 .3212 .9682 .9848 L3237 33718 .9521 9623
Alpha . RC . 2560 .3221 .9805 9752 L3500 L3623 .9517 .9512
10 RB .3333 4380 .9809 9924 4676 b2sy 9795 .987h
e RC . 3680 4698 -9935 .9876 L4286 .Lg28 9862 .9837
* Power at .08 level.
** Power ot .01 level.
Note: RC = ACANCOVA.

ABOY = AB analysis in which interaction ie significant st the .01 level,
ABOS = RO anslysis in which inseraction s significent at the .08 level.
ACO1 = RCANCOVA snalysis in which haterogeneity is signiticant et the .01 level.
ACOS = RCANCOV.A snaiyshs in which haterogeneity s significent at the .08 level.
I = Compered with,
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the CANCOVA technique uniformly more powerful under these conditions,
This rela‘ionship does not hold, however,K for conditions in which

S5, = SS_ is not equal to 0. A'value equal to the ratio, S5, / ssghc) s

PV, was defined for situations in which Pw(RB) = Pw(C). PV was shown to
be a monotonic decreasing function of sample size. The smaller sample
sizes within any design type, allow for the greatest amounts of hetero-
geneity (interaction) before Pw(RB) > Pw((); in addition, the degrees of
freedom difference between RB and CANCOVA techniques [df(c) > df(b)]
provides a higher probability for rejection of the null hypothesis of

no treatment effect under CANCOVA. These combined factors provide
CANCOVA with a power advantage when the sample size is relatively small
and heterogeneity (interaction) is minimal. As the sample size increases
PV approaches 0 and at the same time the degrees of freedom advantage

of CANCOVA over RB becomes negligible. Under these conditions the power
advantage tends to shift in favor of RB. The relatively small PV of the
larger sample size does not permit very high levels of heterogeneity
(interaction) to be present before Pw(RB) becomes greater than Pw(C).

Another aspect of the analytical results involves the implicationms
regarding the relationship between power and the correlation between
the concomitant variable and the criterion variable. For RB and ANCOVA
designs in which the concomitant variables are continuous,6 the relative
power of each design is dependent on the value of the linear correlation
coefficient (p) between the concomitant and criterion variables. When
p < 0.4, the RB technique tends to be more powerful; when p > 0.6, the
ANCOVA technique tends to be more powerful.'’” However K these results do
not generalize to the case when the concomitant variable is not continuous,
In RB, the qualitative concomitant variable is used as a blocking variable
and the amount of errovr reduction is equal to the sum of squares for
blocking, SSB; in CANCOVA, the qualitative concomitant variable is used

to generate a set of dichotomous dummy covariables and the amount of error
reduction is equal to the sum of squares for the pooled within-cell
regression, SSb. It was shown that SSB = SSb; since the amount of error

variability explained by the correlation between the qualitative concomi-
tant and criterion variables for both the RB and CANCOVA analyses is

the same, the power difference between the RB or CANCOVA techniques is
not a function of the value of eta.

Empirical Results

Goodness-of-fit., Using chi-square goodness-of-fit tests 6 it was
shown that all 12 null design combinations produced chi-square statistics
which fell within 95% confidence intervals for chance occurrences. These
sample runs were used to establish the adequacy of the random number
generators and to empirically validate the computational subroutines
within the Monte Carlo program.

" Cox, 1957, op. cit.; Feldt, 1958, op. cit.
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Empirical Power Comparisons. The empirical data showed no inter-
pretable differences, either in magnitude and direction, between the
power of the RB and RCANCOVA. At nominal alpha levels of .01, .05, and
.10 the number of significantly different power comparisons for the
two-, three-, and four-category design types fell within 95% confidence
intervals for chance occurrences. Empirically there is no difference
in power between the two techniques; however K caution must be exercised
in interpreting these results to an applied situation. RCANCOVA was
designed as a post-hoc CANCOVA in which the a priori fixed number of
observations per category of the concomitant variable (ni.) becomes a

post hoc random variable. Since CANCOVA and RB were shown to be
analytically equivalent, RCANCOVA could be viewed as a post hoc blocking
technique; however, in actual practice post hoc blocking is a technique
in which the a priori fixed number of observations per cell of the

design (nij) becomes a post hoc random variable. Since n,. #n e

1y th
RCANCOVA is not equivalent to a post hoc blocking technique; further
investigation using more realistic post hoc models 1is necessary before
inferences can be crawn regarding the relative power of RB and post
hoc RB designs.

SUMMARY

The powers of fixed-effects randomized block (RB) and analysis of
covariance (CANCOVA) using qualitative concomitant variables were
analytically and empirically compared. Analytical comparisons were made
of the powers of RB and CANCOVA in which the number of observations (n )
within each of the I categories of the concomitant variable was a L
constant. FEmpirical comparisons were made of the power of CANCOVA in
which n, was a random variable (RCANCOVA) with RB in which n, was a

constant. A Monte Carlo program simulated fixed-effects analyses with

two levels of treatment 6 one criterion variable, and a qualitative

concomitant variable with T categories. Three design types in which

I was equal to 2, 3 and 4 were studied. The parameters varied for

each design type were: (1) total sample size (n,.) (I=2, n..=20, 80;

I=3, n..=36, 144; I=4 n..=56, 224), (2) ratio of number of row

observations (I=2 1:1 4:1; =3 1:1:1 4:1:1; I=4 1:1:1:1 4:1:1:1),

(3) eta (0.0, 0.3, 0.9), and (4) magnitude of treatment effect (0.0, l
0.2, 0.5).

Analytically,6 the RE and CANCOVA provided the same information in
terms of component sums of squares. However, the power relationship was
shown to be a function of sample size 6 design type, and amount of
heterogeneity (interaction) present. Empirically no interpretable |
differences were found, either in magnitude and direction, between the
power of the RB and RCANCOVA for any of the design type and parameter
combinations studied.
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APPENDIX A

DOCUMENTATION FOR PROGRAM WHICH COMPUTES ETA
FROM MARGINAL ROW MEANS

A single parameter card is used for each combination of marginal
means tested,

Col Information

1 number of categories in the control variable (2, 3, or 4) '
2-4 value of marginal mean for first blocking level (F3.2)

5=T value of marginal mean for second blocking level (F3,2) I
8-10 value of marginal mean for third blocking level (F3.2)
11-13 value of marginal mean for fourth blocking level (F3.2) ‘

(Card contains only as many means as there are categories, {.e., a three cate-
gory control variable design has only three marginal mean values punched.)

The program reads irn the marginal mean values and computes the value
of eta based on the following relationship:

1
1 bt
T - ail(ui-u)’
0 - L
ot

where I = number of rows, Wy = Trow mean, p = grand mean, o; is the

total variance and is set equal to one.
Output consists of the values of the row means and the computed eta.

Table A-1 shows the row means for each eta used in the Monte-Carlo

analyses.
Table A-1
ROW MEAN VALUES FOR EACH DESIGN TYPE
Control Variable Designs

value Two Category Three Category Four Category

of Row Row Row
Eta 1 2 1 2 3 1 2 3 4

.3 1.00 1.60 1.00 1l.30 1l.70 l1.00 l.20 1l.40 1l.80

.9 1.00 2.80 1.00 1.60 3.75 1.00 1l.60 2.20 3.40

SEUS — . T -
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The row means in Table A-1 were used to compute the actual cell
means for each cell in a specific design. The computed cell means were
used by RANDN to generate the observations within that cell. For
example, if the value of eta was .3 and the treatment effect was .2 for
a two category design, then cell (11)'s population mean would be 0.90,
cell (12)'s population mean would be 1.10, cell (21)'s population mean
would be 1.50, and cell (22)'s population mean would be 1.70.

e v
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APPENDIX B

DOCUMENTATION FOR THE CHI-SQUARE
GOODNESS-OF-FIT TEST

A single parameter card was used for each starting number to be
tested.

Col Information
1-6 six digit starting number read in under F format (F6.0)

The program read in the starting number and called up the subroutine
RANDN to generate 1 000 numbers, with a mean of 0.0 and standard deviation
of one. The program divides the empirical frequency distribution into
16 intervals of .4 standard deviations each. Observed frequencies are
compared with the expected for each interval and chi squares for each
interval as well as an overall chi square are computed.

Output consists of the overall chi square, observed frequencies for
each of the 16 intervals and chi squares for each interval.
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APPENDIX C

DOCUMENTATION FOR MONTE CARLO PROGRAM

The following parameter cards are used by the Monte Carlo program:

(1) Srarting Number Card

Col Information
1-6 six digit starting number for RANDN (F6.0)

7-12 six digit starting number for RANDU (F6.0)

13-16 four digit field for number of sample generations to be run
for each design combination read in on the following parameter
cards (I4)

(9]

Col
1 0 stop program

1l read in parameters and run
one digit F field for the value of eta, (Fl.l)

3-5 three digit F field for treatment effect difference, (F3.2)

6 one digit I field for number of cells in the RB analysis 4,
6, or 8

7-8 two digit I ficld defining number of observations to be
generated by RANDN in cell (11)

9-11 three digit F field defining the value of the population mean

under which the observations in cell (11) will be generated
by RANDN, (F3.2)

12-13% two digit I field defining number of observations to be
generated by RANDN in cell (21)
1%4-16 three digit F field defining the value of the population

mean under which the observations in cell (21) will be
generated by RANDN, (F3.2)

Col

. e
. o

repeat until parameters for all cells involved in the particular design
are punched. The maximum allowed is for a 4 x 2 design with 8 cells.
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The program reads in the parameter cards; card (1) is read only once
for each set of runs. There is no limit to the number of type (2) cards
which may be read using a single set of starting numbers. If it is
desirable to use different sets of starting numbers for each design
combination, then the program must be terminated after each run and a
new set of parameter cards, both (1) and (2), used to start a new run.

RANDN is called up to generate data for each cell of the design.
The data generated are analyzed by the RB subroutine. A new set of data
is generated by RANDN under subroutine RCANCOVA. This set has the same
number of observations as the RB analysis, but the number of observations
per control variable category is determined by a subroutine which randomly
assigns category classifications to each observation generated by RANDN.
The probability of assigning a set of covariable sccres corcesponding to
a given category of the concomitant variable is the ratio of the number
of observations in that category to the total number of observations
for the design. RCANCOVA produces a set of data in which the number of
observations in each category of the control variable is a random
variable and is representative of the population defined in the parameter
card. Each observation within a category is assigned the proper set of
covariable scores and the set of data generated under RCANCOVA is analyzed
as if it were a one-way ANCOVA.

Output consists of a table containing the following:

1. The design parameters

a. The dimensions of the design
b. Eta
c. Treatment effect difference

d. Cell sizes, treatment level sizes, blocking level sizes, and
the total sample size

2. Total sample data--summary data for all 6,000 samples generated
a. Frequency of rejection, proportion of rejection, 2 and 2z’
statistics at all six nominal alpha levels for the RB and
RCANCOVA analyses
b. A total frequency count for each analytical technique
3. Interaction and heterogeneity at the .0l level--data for all
samples out of the 6,000 with interaction in the RB analysis
significant at the .01 level and heterogeneity in the RCANCOVA
analyses signtficant at the .01 level

a., Same as 2a above

b. Same as 2b above



L,

Same as 3 above except for interaction and heterogeneity which
was significant at the .05 level.
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